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Abstract

Flow field of a cylinder with a mid-span curvature was experimentally investigated in a wind tunnel and a water

tunnel. The azimuthal orientation of the cylinder was changed to obtain a nodal, saddle and a mixed nodal–saddle type

of flow attachment. Surface flow topology suggested that the nature of the attachment strongly influenced the spanwise

distributions of foci structures that play a significant role in introducing three-dimensionality in the immediate wake.

Flow visualization in the water tunnel revealed that the length of a vortex formation region also followed the changes in

the nature of the attachment. A symmetric shedding of vortices was observed with a saddle type of attachment. Wake

mean velocity profiles showed that the velocity defect and therefore the drag of a curved cylinder was minimum for

nodal, and maximum for saddle type of attachment. Nomenclature of the wake was compared with asymptotic profiles

and equilibrium parameters. Approach to self-preservation, similarity and other features are discussed.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Towing cables, stranded wires and other flexible structural elements in airborne and offshore marine applications

are subjected to flow-induced vibrations and unsteady wakes that cause structural fatigue and often result in

unpredictable failures. Relf and Powell (1917) were the first to report tests on flexible cables, followed by McLeod

(1918). Analytical treatment of the problem posed by towed cables was first reported by Philips (1949) who noted

that a towed body subjected to cable-induced oscillations experiences stability problems such as longitudinal

whipping. These problems, however, are largely rooted in the resonant unsteady fluid and elastic coupling that

occurs due to a combination of bluff body oscillations (Bearman, 1984), spanwise cellular breakdown of symmetry

due to attachment line shape (Ahmed and Bays-Muchmore, 1992; Ahmed et al., 1993; Darekar and Sherwin, 2001;

Owen et al., 2001), orientation (Ramberg, 1983), etc. Two-dimensional bluff body wakes and free shear layers

contain spanwise deterministic coherent structures such as the Karman vortices (e.g., see Roshko, 1954; Gerrard,

1978) and rollers (e.g., see Lasheras and Choi, 1988; Meiburg and Lasheras, 1988). Smaller scale quasi-

deterministic structures such as streamwise vortices have been observed by several researchers in the past, notably

Townsend (1979) and Wei and Smith (1986). These smaller scales that are in the form of streamwise vortices,
e front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

b half wake width

D cylinder diameter

f vortex shedding frequency

U mean axial velocity

Uo edge velocity

UN free-stream velocity

St Strouhal number, fD/U

Re Reynolds number, UD/n
W wake velocity deficit (Wo, centerline defect)

X,Y,Z streamwise, transverse and spanwise coordi-

nates

y momentum thickness

n kinematic viscosity

j flow attachment angle, measured clockwise

from the direction of free-stream flow
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however, extract energy from larger coherent structures and significantly distort the wake and introduce three-

dimensionality that continues to increase as the flow continues downstream (Hayakawa and Hussain, 1989).

Although, considered to be a route to transition in the wake, streamwise vortices have been observed in fully

turbulent wakes as well (Bays-Muchmore and Ahmed, 1993). Hama (1957) has addressed in detail the three-

dimensionality of the cylinder wake that is also vividly seen in the flow visualization results of Gerrard (1978) who

reported the presence of ‘‘knots’’ and ‘‘fingers’’ superimposed on the von Karman vortices in the wake. Flow over a

right circular cylinder therefore is an example of degenerate topological flow, as any three-dimensionality

introduced into such a domain causes bifurcation of the flow to a stable topology of nodes and saddles, as

described by Dallmann and Schewe (1987). Two-dimensionality therefore exists only as an idealization. In practice,

three-dimensional effects are always present. Williamson (1996), for example, has stressed the role of end

conditions in the spread of three-dimensionality in the wake and if the cylinder geometry does not determine their

form, it is determined by uncontrolled factors such as small perturbations in the incident-free stream. These

uncontrolled structures move in space making them difficult to study.

The flow field of a yawed cylinder is significantly different from that of right circular cylinders, due to the nature of

boundary layer and pressure distribution discussed in detail by Sears (1948). Because of the cross-stream pressure

gradients, the base pressure and flow characteristics show higher sensitivity to the asymmetric end-wall conditions and

the wake is essentially unsteady and three-dimensional (e.g., see Ramberg and Griffin, 1976; Shirakashi et al., 1986).

With the exception of tow tanks, much of the experimental work in the wind tunnels has been modeled by yawed

cylinders in cross-flow (Bursnall and Loftin, 1951). Finite length cylindrical bodies at incidence on the other hand

produce multiple vortices in the wake (Thomson and Morrison, 1971).

In practice a tethered flexible cable has a finite curvature due to weight and end conditions and therefore the

oncoming flow is not perfectly normal to its axis. The resulting curved attachment line can impose additional strain on

the flow and can vary along the entire length as the radius of curvature changes. The attachment line flow further

depends on the azimuthal orientation and also serves as the source of three-dimensionality in the wake that can either

attenuate or amplify the unsteady loads on a cable due to vortex shedding.

As a part of an ongoing research on vortex dynamics the primary objective of the present work was to investigate

wake of a circular cylinder with mid-span curvature capable of topologically different flows along the attachment line.
2. Experimental set-up

The geometry of the curved cylinder model used in the investigation is shown in Fig. 1. The model was made from a

25mm diameter solid acrylic rod. The overall length of the model was 40 diameters and the mid-part was smoothly bent

at a radius of curvature of 20 diameters. This reduced the transverse length to 36 diameters, and the model thus spanned

the entire width of the wind tunnel. Five azimuthal angles of flow attachment (j ¼ 01, 451, 901, 1351, 1801) were tested.

The attachment of the flow is therefore described as nodal when j ¼ 0o and saddle when j ¼ 1801. A 25mm diameter

straight cylinder was also tested for comparison purposes.

Wind tunnel tests were conducted in a 61 cm� 92 cm closed circuit wind tunnel equipped with a two-degree-of-

freedom traversing system. Total pressures in the wake were measured with the help of a Kiel probe connected to a

Valedyne DP45-14 pressure transducer. The test Reynolds number based of cylinder diameter was 20 000. Wake power

spectra were measured with the help of a Dantec single wire probe connected to a Dantec 56C17 Bridge, 56N21

Linearizer and a 56N20 Signal Conditioner. Data was acquired at 20 kHz on a PC and post processed using Matlab

software. A HP 3563A System Analyzer was also used to determine primary shedding frequency during the tests.
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Fig. 1. Model geometry and description of azimuthal attachment angle j.
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A unique technique was employed for cylinder surface flow visualization in the wind tunnel. It consisted of covering

the entire cylinder with shrink-wrap tubing coated with tempera powder mixed with kerosene oil and oleic acid. After

the oil evaporated at a given test condition, the wrapped tubing was longitudinally cut from the rear with a sharp knife

and straightened like a processed snake skin. The ‘‘skin’’ was later sprayed with transparent acrylic and photographed

to obtain permanent record of the limiting streamlines. The wake of the curved cylinder was visualized in a

61 cm� 92 cm cross-section water tunnel at Reynolds numbers of 1300. A 0.127mm platinum wire was used to produce

pulsed and continuous hydrogen bubble sheets. A 4W Argon-ion laser beam was used to form a light sheet to

illuminate the bubbles in various planes of interest. Video images from a NEC T123A CCD camera were recorded on a

Toshiba SV-F990 VCR. Video records were analyzed frame by frame and selected images were printed on a Sony

thermal printer.
3. Results and discussion

3.1. Flow visualization

3.1.1. Wind tunnel flow visualization

Surface flow visualization in the wind tunnel provided a new insight into the origin of the structures present in the

cylinder wake as observed in the water tunnel for different azimuthal attachment of the flow. In order to show the

limiting streamlines clearly and to prevent wrinkling, the shrink wrap for the j ¼ 01 case was cut just under the

attachment line, and for the j ¼ 1801 case it was cut from the rear. Surface flow visualization results presented in Fig. 2

for nodal and saddle attachment show the primary separation lines, secondary separation lines and foci structures. Foci

structures are classified as unstable limit cycles whereby the dye from outside accumulates towards the center and leaves

the surface (Maskel, 1955; Perry and Fairlie, 1974).

Azimuthal locations of primary separation lines on straight cylinders for fully turbulent flows have been reported to

be at 1161 by Roshko (1961) and 1151 by Achenbach (1968). The laminar separation, on the other hand, occurs ahead

of 901 as the surface pressure begins to rise. The measured locations of the primary separation lines for the cases tested

were well below the turbulent values, and also because of the low Reynolds number, it was concluded that the

separation was laminar. The locations of primary separation lines as measured from the attachment line was at 7801

for j ¼ 01 and moved upstream to 7731 for j ¼ 1801 case and are labeled in Fig. 2. Similarly the secondary separation

lines were located at71451 for j ¼ 01 and moved downstream to71521 for j ¼ 1801 case. In comparison, the primary

and secondary separation lines for the straight cylinder were at 7801 and 71701, respectively.

For nodal attachment (j ¼ 01), the limiting streamlines move outwards spanwise and after traversing the

circumference converge to form foci between the primary and secondary separation lines on the leeward side. The flow

later detaches at foci and spirals off into the wake. These foci structures on the leeward side of the cylinder presented in

Fig. 2(a) are very different from the dominant foci structures observed for a right circular cylinder by Bays-Muchmore

and Ahmed (1993).
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Fig. 2. Surface flow visualization of cylinder: (a) j ¼ 01 and (b) j ¼ 1801.

Fig. 3. Topological cartoon of flow inferred from flow visualization.
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Surry (1965) in his flow visualization work with curved cylinders has reported similar results. He also reported

spanwise flow to be away from the cylinder centerline and towards its ends and formation of eddies in the wake. These

eddies produced narrow reverse flow channels behind the separation line, resulting in flow detaching and bleeding off

from four stagnation regions into the wake. In the present investigation four foci structures were observed to occur on

the leeward side of the cylinder. The location of these foci structures was different than what was observed by Surry and

is attributed to differences in end-wall conditions, type of attachment and separation. For the j ¼ 1801 case, the

limiting streamlines move towards the centerline along the attachment line and intersect at the saddle where two

streamlines emanate from the saddle and traverse the circumference towards the leeward side where they converge with

the near surface flow to form foci structures (Fig. 2(b)).

It may be noted that the foci were displaced outwards, i.e. away from the centerline to 75 diameters for j ¼ 01 but

were displaced only 71 diameter from the centerline for j ¼ 1801. This indicated that the wake was narrow due to

lateral stretching for nodal attachment and wider due to lateral compression for a saddle type of attachment. These

observations were substantiated by water tunnel flow visualization and wake velocity surveys. A topological description

the surface flow is presented in Fig. 3. Here F is focus in velocity vector field topology, N and S are nodes and saddles in

shear stress field topology, and N0 and S0 are skewed singular points (Hunt et al., 1978; Tobak and Peake, 1982).

3.1.2. Water tunnel flow visualization

For yawed cylinders it has been noted that the end-wall conditions alter the cross-flow effects in the wake

significantly. Thus, through harmonic and/or sub-harmonic coupling, the end-wall effects can amplify or attenuate

certain modes that may not be the characteristic of the flow altogether. However, in the case of a curved cylinder the

symmetric boundary conditions imposed symmetric strains and some unique features of the wake therefore remained

intact. Results of flow visualization of curved cylinder for Reynolds number of 1300 are presented in Fig. 4. For the

nodal attachment (j ¼ 01), von Karman vortex street is visible but is significantly distorted by additional flow

structures. The side view of the same flow in Fig. 4(b) shows the curvature of the vortex street, streamwise vortices and
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Fig. 4. Flow visualization of the cylinder wake.

Fig. 5. Wake mean velocity profiles.
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distortions. For saddle attachment (j ¼ 1801) symmetric shedding of shear layer vortices followed by an asymmetric

growth within 6 diameters is visible in Fig. 4(c). A side view of the same flow in Fig. 4(d) shows the presence of larger

scales and highly three-dimensional wake.

The length of the vortex formation region was measured from video records and was found to be 1.13 diameters for

the straight cylinder, 1.5 diameters for j ¼ 01 and steadily increased to 3 diameters for j ¼ 1801. This shows that this

length is dependent not only on Reynolds number and three-dimensionality in the wake (Williamson, 1996) but also on

the attachment line geometry as previously observed by Ahmed et al. (1993).

3.2. Wake surveys

Total pressure surveys in the wake were conducted at six streamwise stations (X/D ¼ 3, 5, 7, 9, 15, 20). At each

station wake was traversed vertically ranging from Y/D ¼73 for the first four stations and Y/D ¼76 for the

remaining two stations. Wake power spectra were measured at the edge of the wake at each station.

3.2.1. Mean velocity profiles

Fig. 5 shows the mean velocity profiles in the wake of a curved cylinder at X/D ¼ 7 and in the plane of symmetry

(Z/D ¼ 0) for various azimuthal attachments (j ¼ 0–1801). The results are compared with the data of a straight

cylinder. Using the momentum deficit method, the velocity defect plots were integrated to obtain the drag coefficient Cd.

A Cd ¼ 0.8 for nodal attachment was lower than Cd ¼ 0.95 for a right circular cylinder. The value of Cd increased

gradually for up to j ¼ 901 and increased rapidly to its maximum value of 1.15 for j ¼ 1801.
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Fig. 6. Wake mean velocity defect profiles.

Fig. 7. Variation of Wo in the wake.
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The value of the shape factor calculated from integral quantities in the wake at the last measurement station was 1.2.

This indicated that self-preservation was not achieved up to 55 momentum thicknesses downstream in the wake,

although the trends towards the asymptotic value were correct. Velocity defect profiles are compared with the mean

asymptotic profile of Ramaprian et al. (1982) in Fig. 6 for X/D ¼ 20. A slight overshoot in a region between Y/b ¼ 0.5

and 1.5 is observed and is attributed to three-dimensionality of the wake.
3.2.2. Variation of Wo and b

A wake is supposed to have reached self-preserving state when it conforms to the following asymptotic trends

suggested by Ramaprian et al. (1982):

W o / X�1=2; b / X 1=2,

where Wo is the maximum velocity defect and b is the half wake width. Results of the curved cylinder wake are

compared with the straight cylinder wake, and the flat plate data of Ramaprian et al. (1982), Chevray and Kovasznay

(1969) and Andreopoulos and Bradshaw (1980) in Figs. 7 and 8. Slopes were observed to be slightly higher compared to

flat plate data. In the near-wake region some scatter was observed; however, linear variations were observed at higher

X/y values, indicating that the wake was approaching a self-preserving state. An increase in slopes with increasing j was

also noted. This is attributed to the appearance of additional eddies and turbulence as observed in the wakes during the

flow visualization tests in the water tunnel.

Sreenivasan (1981) stated that a self-preserving wake is characterized by two parameters:

W o

U

� � ffiffiffi
x

y

r
and

bffiffiffiffiffiffiffi
Xy
p .

These equilibrium parameters attain universal values of 1.6370.02 and 0.3070.05, respectively, if the wake is self-

preserving. These parameters, plotted in Figs. 9 and 10, show that, although the curved cylinder wake for nodal



ARTICLE IN PRESS

Fig. 8. Variation of wake half-width.

Fig. 9. Comparison of wake defect equilibrium parameter.

Fig. 10. Comparison of wake half-width equilibrium parameters.
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attachment tends to approach these values faster than the straight cylinder wake, the wake failed to achieve equilibrium

state. Another interesting aspect to note is that the route to equilibrium state appears to be highly dependent of the

nature of attachment, separation and state of boundary layer.

3.2.3. Wake power spectrum

Unfiltered wake power spectra for the straight cylinder, j ¼ 01 and 1801 cases, are presented in Fig. 11. In addition to

higher power spectral density noted for both types of attachment compared to the straight cylinder, a shift in the

fundamental shedding frequency towards higher wavenumbers for the j ¼ 01 case and towards lower wave numbers for
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Fig. 11. Wake power spectra.
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the j ¼ 1801 case is evident. On the average this shift is 72.5Hz from the fundamental shedding frequency of straight

cylinder. This indicates that the wake undergoes lateral stretching due to ‘‘outward’’ flow for the nodal attachment and

lateral compression due to ‘‘inward’’ flow for the saddle type of attachment. Consequently the convection velocity in the

wake is increased for the nodal attachment and reduced for saddle attachment. Power spectra for the j ¼ 01 and 1801

wakes show gradual roll-off past the shedding frequency indicating distribution of energy to additional flow structures

at higher wavenumbers. However, for the j ¼ 1801 case, the energy distribution is higher as compared to j ¼ 01,

indicating relatively higher levels of broad-band turbulence. Both harmonic (appearance of smaller eddies) and sub-

harmonic (indicative of amalgamation of fluid structures) interactions are evident for the j ¼ 1801 case.
4. Conclusions

Counter-rotating foci structures located between primary and secondary separation lines were observed to be the

dominant features of the curved cylinder wake. These foci were displaced outwards when the singular point of

attachment was a node, and inwards for saddle attachment. The displacement of foci along with the direction of

rotation was such that the Karman vortices were stretched for nodal attachment. The opposite was true for saddle

attachment whereby the distortion of the vortex street was more pronounced and turbulent. Based on the detailed

analysis of flow visualization data, it is also concluded that vortex splitting occurs when a strained vortex undergoes

axial stretching. A vortex dislocation, on the other hand, occurs due to axial compression. A shift in primary shedding

frequency was observed with the azimuthal orientation of the cylinder, resulting in a variation of the Strouhal number.

Drag for the nodal attachment was less than for the saddle attachment due to the differences in the wake. Trends for

approach to equilibrium were faster for saddle type of attachment, and this is attributed to higher turbulence and

mixing in the wake.
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